The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Structural Equation Modeling: A Bayesian Approach

Structural Equation Modeling: A Bayesian Approach in Chattanooga, TN

Current price: $164.95
Get it in StoreVisit retailer's website
Structural Equation Modeling: A Bayesian Approach

Barnes and Noble

Structural Equation Modeling: A Bayesian Approach in Chattanooga, TN

Current price: $164.95
Loading Inventory...

Size: OS

***Winner of the 2008 Ziegel Prize for outstanding new book of the year***
Structural equation modeling (SEM) is a powerful multivariate method allowing the evaluation of a series of simultaneous hypotheses about the impacts of latent and manifest variables on other variables, taking measurement errors into account. As SEMs have grown in popularity in recent years, new models and statistical methods have been developed for more accurate analysis of more complex data. A Bayesian approach to SEMs allows the use of prior information resulting in improved parameter estimates, latent variable estimates, and statistics for model comparison, as well as offering more reliable results for smaller samples.
Structural Equation Modeling
introduces the Bayesian approach to SEMs, including the selection of prior distributions and data augmentation, and offers an overview of the subject’s recent advances.
Demonstrates how to utilize powerful statistical computing tools, including the Gibbs sampler, the Metropolis-Hasting algorithm, bridge sampling and path sampling to obtain the Bayesian results.
Discusses the Bayes factor and Deviance Information Criterion (DIC) for model comparison.
Includes coverage of complex models, including SEMs with ordered categorical variables, and dichotomous variables, nonlinear SEMs, two-level SEMs, multisample SEMs, mixtures of SEMs, SEMs with missing data, SEMs with variables from an exponential family of distributions, and some of their combinations.
Illustrates the methodology through simulation studies and examples with real data from business management, education, psychology, public health and sociology.
Demonstrates the application of the freely available software WinBUGS via a supplementary website featuring computer code and data sets.
Structural Equation Modeling: A Bayesian Approach
is a multi-disciplinary text ideal for researchers and students in many areas, including: statistics, biostatistics, business, education, medicine, psychology, public health and social science.
***Winner of the 2008 Ziegel Prize for outstanding new book of the year***
Structural equation modeling (SEM) is a powerful multivariate method allowing the evaluation of a series of simultaneous hypotheses about the impacts of latent and manifest variables on other variables, taking measurement errors into account. As SEMs have grown in popularity in recent years, new models and statistical methods have been developed for more accurate analysis of more complex data. A Bayesian approach to SEMs allows the use of prior information resulting in improved parameter estimates, latent variable estimates, and statistics for model comparison, as well as offering more reliable results for smaller samples.
Structural Equation Modeling
introduces the Bayesian approach to SEMs, including the selection of prior distributions and data augmentation, and offers an overview of the subject’s recent advances.
Demonstrates how to utilize powerful statistical computing tools, including the Gibbs sampler, the Metropolis-Hasting algorithm, bridge sampling and path sampling to obtain the Bayesian results.
Discusses the Bayes factor and Deviance Information Criterion (DIC) for model comparison.
Includes coverage of complex models, including SEMs with ordered categorical variables, and dichotomous variables, nonlinear SEMs, two-level SEMs, multisample SEMs, mixtures of SEMs, SEMs with missing data, SEMs with variables from an exponential family of distributions, and some of their combinations.
Illustrates the methodology through simulation studies and examples with real data from business management, education, psychology, public health and sociology.
Demonstrates the application of the freely available software WinBUGS via a supplementary website featuring computer code and data sets.
Structural Equation Modeling: A Bayesian Approach
is a multi-disciplinary text ideal for researchers and students in many areas, including: statistics, biostatistics, business, education, medicine, psychology, public health and social science.

More About Barnes and Noble at Hamilton Place

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

2100 Hamilton Pl Blvd, Chattanooga, TN 37421, United States

Find Barnes and Noble at Hamilton Place in Chattanooga, TN

Visit Barnes and Noble at Hamilton Place in Chattanooga, TN
Powered by Adeptmind