The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Optical Response of Nanostructures: Microscopic Nonlocal Theory

Optical Response of Nanostructures: Microscopic Nonlocal Theory in Chattanooga, TN

Current price: $109.99
Get it in StoreVisit retailer's website
Optical Response of Nanostructures: Microscopic Nonlocal Theory

Barnes and Noble

Optical Response of Nanostructures: Microscopic Nonlocal Theory in Chattanooga, TN

Current price: $109.99
Loading Inventory...

Size: Hardcover

This book deals with a recently developed theoretical method for calculating the optical response of nanoscale or mesoscopic matter. There has been much interest in this type of matter system because it brings out a new feature of solid state physics, viz. , the central importance of the quantum mechanical coherence of matter in its transport and optical properties, in contrast to bulk systems. The author has been interested in the optical properies of mesoscopic matter since the mid-1980s, seeking to construct a new theoretical framework beyond the traditional macroscopic optical response theory. The new element to be included is the microscopic spatial structure of the response field and induced polarization, and the nonlocal relationship between them. This is the counterpart of the size quantization of confined electrons or excitons reflecting the sampIe size and shape in detail. AIthough the latter aspect has been widely discussed, the former has not received due attention, and this has prompted the author to introduce a new theoretical framework. This book describes such a theory, as developed by the author's present group. Although it is only one of several such frameworks, we believe that it is constructed in a sufficiently general manner to apply to the study of the linear and nonlinear optical responses of nanostructures of various sizes and shapes, subjects of considerable interest today.
This book deals with a recently developed theoretical method for calculating the optical response of nanoscale or mesoscopic matter. There has been much interest in this type of matter system because it brings out a new feature of solid state physics, viz. , the central importance of the quantum mechanical coherence of matter in its transport and optical properties, in contrast to bulk systems. The author has been interested in the optical properies of mesoscopic matter since the mid-1980s, seeking to construct a new theoretical framework beyond the traditional macroscopic optical response theory. The new element to be included is the microscopic spatial structure of the response field and induced polarization, and the nonlocal relationship between them. This is the counterpart of the size quantization of confined electrons or excitons reflecting the sampIe size and shape in detail. AIthough the latter aspect has been widely discussed, the former has not received due attention, and this has prompted the author to introduce a new theoretical framework. This book describes such a theory, as developed by the author's present group. Although it is only one of several such frameworks, we believe that it is constructed in a sufficiently general manner to apply to the study of the linear and nonlinear optical responses of nanostructures of various sizes and shapes, subjects of considerable interest today.

More About Barnes and Noble at Hamilton Place

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

2100 Hamilton Pl Blvd, Chattanooga, TN 37421, United States

Find Barnes and Noble at Hamilton Place in Chattanooga, TN

Visit Barnes and Noble at Hamilton Place in Chattanooga, TN
Powered by Adeptmind