Home
Integrated Tracking, Classification, and Sensor Management: Theory Applications
Barnes and Noble
Loading Inventory...
Integrated Tracking, Classification, and Sensor Management: Theory Applications in Chattanooga, TN
Current price: $179.95

Barnes and Noble
Integrated Tracking, Classification, and Sensor Management: Theory Applications in Chattanooga, TN
Current price: $179.95
Loading Inventory...
Size: Hardcover
A unique guide to the state of the art of tracking, classification, and sensor management
This book addresses the tremendous progress made over the last few decades in algorithm development and mathematical analysis for filtering, multi-target multi-sensor tracking, sensor management and control, and target classification. It provides for the first time an integrated treatment of these advanced topics, complete with careful mathematical formulation, clear description of the theory, and real-world applications.
Written by experts in the field,
Integrated Tracking, Classification, and Sensor Management
provides readers with easy access to key Bayesian modeling and filtering methods, multi-target tracking approaches, target classification procedures, and large scale sensor management problem-solving techniques. Features include:
An accessible coverage of random finite set based multi-target filtering algorithms such as the Probability Hypothesis Density filters and multi-Bernoulli filters with focus on problem solving
A succinct overview of the track-oriented MHT that comprehensively collates all significant developments in filtering and tracking
A state-of-the-art algorithm for hybrid Bayesian network (BN) inference that is efficient and scalable for complex classification models
New structural results in stochastic sensor scheduling and algorithms for dynamic sensor scheduling and management
Coverage of the posterior Cramer-Rao lower bound (PCRLB) for target tracking and sensor management
Insight into cutting-edge military and civilian applications, including intelligence, surveillance, and reconnaissance (ISR)
With its emphasis on the latest research results,
is an invaluable guide for researchers and practitioners in statistical signal processing, radar systems, operations research, and control theory.
This book addresses the tremendous progress made over the last few decades in algorithm development and mathematical analysis for filtering, multi-target multi-sensor tracking, sensor management and control, and target classification. It provides for the first time an integrated treatment of these advanced topics, complete with careful mathematical formulation, clear description of the theory, and real-world applications.
Written by experts in the field,
Integrated Tracking, Classification, and Sensor Management
provides readers with easy access to key Bayesian modeling and filtering methods, multi-target tracking approaches, target classification procedures, and large scale sensor management problem-solving techniques. Features include:
An accessible coverage of random finite set based multi-target filtering algorithms such as the Probability Hypothesis Density filters and multi-Bernoulli filters with focus on problem solving
A succinct overview of the track-oriented MHT that comprehensively collates all significant developments in filtering and tracking
A state-of-the-art algorithm for hybrid Bayesian network (BN) inference that is efficient and scalable for complex classification models
New structural results in stochastic sensor scheduling and algorithms for dynamic sensor scheduling and management
Coverage of the posterior Cramer-Rao lower bound (PCRLB) for target tracking and sensor management
Insight into cutting-edge military and civilian applications, including intelligence, surveillance, and reconnaissance (ISR)
With its emphasis on the latest research results,
is an invaluable guide for researchers and practitioners in statistical signal processing, radar systems, operations research, and control theory.
A unique guide to the state of the art of tracking, classification, and sensor management
This book addresses the tremendous progress made over the last few decades in algorithm development and mathematical analysis for filtering, multi-target multi-sensor tracking, sensor management and control, and target classification. It provides for the first time an integrated treatment of these advanced topics, complete with careful mathematical formulation, clear description of the theory, and real-world applications.
Written by experts in the field,
Integrated Tracking, Classification, and Sensor Management
provides readers with easy access to key Bayesian modeling and filtering methods, multi-target tracking approaches, target classification procedures, and large scale sensor management problem-solving techniques. Features include:
An accessible coverage of random finite set based multi-target filtering algorithms such as the Probability Hypothesis Density filters and multi-Bernoulli filters with focus on problem solving
A succinct overview of the track-oriented MHT that comprehensively collates all significant developments in filtering and tracking
A state-of-the-art algorithm for hybrid Bayesian network (BN) inference that is efficient and scalable for complex classification models
New structural results in stochastic sensor scheduling and algorithms for dynamic sensor scheduling and management
Coverage of the posterior Cramer-Rao lower bound (PCRLB) for target tracking and sensor management
Insight into cutting-edge military and civilian applications, including intelligence, surveillance, and reconnaissance (ISR)
With its emphasis on the latest research results,
is an invaluable guide for researchers and practitioners in statistical signal processing, radar systems, operations research, and control theory.
This book addresses the tremendous progress made over the last few decades in algorithm development and mathematical analysis for filtering, multi-target multi-sensor tracking, sensor management and control, and target classification. It provides for the first time an integrated treatment of these advanced topics, complete with careful mathematical formulation, clear description of the theory, and real-world applications.
Written by experts in the field,
Integrated Tracking, Classification, and Sensor Management
provides readers with easy access to key Bayesian modeling and filtering methods, multi-target tracking approaches, target classification procedures, and large scale sensor management problem-solving techniques. Features include:
An accessible coverage of random finite set based multi-target filtering algorithms such as the Probability Hypothesis Density filters and multi-Bernoulli filters with focus on problem solving
A succinct overview of the track-oriented MHT that comprehensively collates all significant developments in filtering and tracking
A state-of-the-art algorithm for hybrid Bayesian network (BN) inference that is efficient and scalable for complex classification models
New structural results in stochastic sensor scheduling and algorithms for dynamic sensor scheduling and management
Coverage of the posterior Cramer-Rao lower bound (PCRLB) for target tracking and sensor management
Insight into cutting-edge military and civilian applications, including intelligence, surveillance, and reconnaissance (ISR)
With its emphasis on the latest research results,
is an invaluable guide for researchers and practitioners in statistical signal processing, radar systems, operations research, and control theory.

















