The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Hands-On Transfer learning with Python: Implement advanced deep and neural network models using TensorFlow Keras

Hands-On Transfer learning with Python: Implement advanced deep and neural network models using TensorFlow Keras in Chattanooga, TN

Current price: $48.99
Get it in StoreVisit retailer's website
Hands-On Transfer learning with Python: Implement advanced deep and neural network models using TensorFlow Keras

Barnes and Noble

Hands-On Transfer learning with Python: Implement advanced deep and neural network models using TensorFlow Keras in Chattanooga, TN

Current price: $48.99
Loading Inventory...

Size: Paperback

Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem
Key Features
Build deep learning models with transfer learning principles in Python
implement transfer learning to solve real-world research problems
Perform complex operations such as image captioning neural style transfer
Book Description
Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems.
The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples.
The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP).
By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems.
What you will learn
Set up your own DL environment with graphics processing unit (GPU) and Cloud support
Delve into transfer learning principles with ML and DL models
Explore various DL architectures, including CNN, LSTM, and capsule networks
Learn about data and network representation and loss functions
Get to grips with models and strategies in transfer learning
Walk through potential challenges in building complex transfer learning models from scratch
Explore real-world research problems related to computer vision and audio analysis
Understand how transfer learning can be leveraged in NLP
Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem
Key Features
Build deep learning models with transfer learning principles in Python
implement transfer learning to solve real-world research problems
Perform complex operations such as image captioning neural style transfer
Book Description
Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems.
The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples.
The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP).
By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems.
What you will learn
Set up your own DL environment with graphics processing unit (GPU) and Cloud support
Delve into transfer learning principles with ML and DL models
Explore various DL architectures, including CNN, LSTM, and capsule networks
Learn about data and network representation and loss functions
Get to grips with models and strategies in transfer learning
Walk through potential challenges in building complex transfer learning models from scratch
Explore real-world research problems related to computer vision and audio analysis
Understand how transfer learning can be leveraged in NLP

More About Barnes and Noble at Hamilton Place

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

2100 Hamilton Pl Blvd, Chattanooga, TN 37421, United States

Find Barnes and Noble at Hamilton Place in Chattanooga, TN

Visit Barnes and Noble at Hamilton Place in Chattanooga, TN
Powered by Adeptmind