The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Graphs, Surfaces and Homology: An Introduction to Algebraic Topology

Graphs, Surfaces and Homology: An Introduction to Algebraic Topology in Chattanooga, TN

Current price: $54.99
Get it in StoreVisit retailer's website
Graphs, Surfaces and Homology: An Introduction to Algebraic Topology

Barnes and Noble

Graphs, Surfaces and Homology: An Introduction to Algebraic Topology in Chattanooga, TN

Current price: $54.99
Loading Inventory...

Size: OS

viii homology groups. A weaker result, sufficient nevertheless for our purposes, is proved in Chapter 5, where the reader will also find some discussion of the need for a more powerful in­ variance theorem and a summary of the proof of such a theorem. Secondly the emphasis in this book is on low-dimensional examples the graphs and surfaces of the title since it is there that geometrical intuition has its roots. The goal of the book is the investigation in Chapter 9 of the properties of graphs in surfaces; some of the problems studied there are mentioned briefly in the Introduction, which contains an in­ formal survey of the material of the book. Many of the results of Chapter 9 do indeed generalize to higher dimensions (and the general machinery of simplicial homology theory is avai1able from earlier chapters) but I have confined myself to one example, namely the theorem that non-orientable closed surfaces do not embed in three-dimensional space. One of the principal results of Chapter 9, a version of Lefschetz duality, certainly generalizes, but for an effective presentation such a gener- ization needs cohomology theory. Apart from a brief mention in connexion with Kirchhoff's laws for an electrical network I do not use any cohomology here. Thirdly there are a number of digressions, whose purpose is rather to illuminate the central argument from a slight dis­ tance, than to contribute materially to its exposition.
viii homology groups. A weaker result, sufficient nevertheless for our purposes, is proved in Chapter 5, where the reader will also find some discussion of the need for a more powerful in­ variance theorem and a summary of the proof of such a theorem. Secondly the emphasis in this book is on low-dimensional examples the graphs and surfaces of the title since it is there that geometrical intuition has its roots. The goal of the book is the investigation in Chapter 9 of the properties of graphs in surfaces; some of the problems studied there are mentioned briefly in the Introduction, which contains an in­ formal survey of the material of the book. Many of the results of Chapter 9 do indeed generalize to higher dimensions (and the general machinery of simplicial homology theory is avai1able from earlier chapters) but I have confined myself to one example, namely the theorem that non-orientable closed surfaces do not embed in three-dimensional space. One of the principal results of Chapter 9, a version of Lefschetz duality, certainly generalizes, but for an effective presentation such a gener- ization needs cohomology theory. Apart from a brief mention in connexion with Kirchhoff's laws for an electrical network I do not use any cohomology here. Thirdly there are a number of digressions, whose purpose is rather to illuminate the central argument from a slight dis­ tance, than to contribute materially to its exposition.

More About Barnes and Noble at Hamilton Place

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

2100 Hamilton Pl Blvd, Chattanooga, TN 37421, United States

Find Barnes and Noble at Hamilton Place in Chattanooga, TN

Visit Barnes and Noble at Hamilton Place in Chattanooga, TN
Powered by Adeptmind