The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Finite-Volumen- und Mehrgitter-Verfahren für elliptische Randwertprobleme

Finite-Volumen- und Mehrgitter-Verfahren für elliptische Randwertprobleme in Chattanooga, TN

Current price: $49.99
Get it in StoreVisit retailer's website
Finite-Volumen- und Mehrgitter-Verfahren für elliptische Randwertprobleme

Barnes and Noble

Finite-Volumen- und Mehrgitter-Verfahren für elliptische Randwertprobleme in Chattanooga, TN

Current price: $49.99
Loading Inventory...

Size: OS

Zum Kontext dieses Buches Die numerische Behandlung partieller Differentialgleichungen beinhaltet im allgemeinen die Lösung großer bis sehr großer Gleichungssysteme. Bei dreidimensionalen Problemen z. B. sind mehrere Millionen Unbekannte keine Seltenheit, und obwohl die Rechenleistung der stärksten Computer in den letzten Jahrzehnten exponentiell angestiegen ist, könnten viele praxis­ relevante Probleme heute nicht gelöst werden, wären die Numeriker nicht bei der Entwicklung effizienter Algorithmen ähnlich erfolgreich gewesen. Zu den bemerkenswertesten Fortschritten auf diesem Gebiet zählt die Entwicklung adaptiver Mehrgitter-und Multilevelverfahren, deren Erfolg auf der Verschmelzung zweier leistungsfähiger Konzepte beruht: der Kombination adaptiver Diskretisierungstechniken mit schnellen Mehrgitter- bzw. Multilevellösern. Die Anwendung adaptiver Diskretisierungstechniken dient zunächst dazu, die Anzahl der Unbekannten und damit die Dimension des zu lösenden Gleichungssystems möglichst gering zu halten. Wurden früher zur Diskretisierung partieller Differentialgleichungen in erster Linie gleichmäßig strukturierte Rechteckgitter verwendet, so ist man heute durch den Einsatz ge­ eigneter Fehlerschätzer in der Lage, die Diskretisierung - ausgehend von einem relativ groben Anfangsgitter und einer entsprechend groben Näherungslösung - schrittweise an die aktuel­ le Näherungslösung anzupassen, bis die gewünschte Genauigkeit erreicht ist. Üblicherweise wird dazu das aktuelle Diskretisierungsgitter lokal verfeinert, und zwar an solchen Stellen, wo aufgrund entsprechender Fehlerabschätzungen eine höhere Genauigkeit zu erwarten ist, z. B. in der Nähe von Singularitäten, Grenzschichten, einspringenden Ecken, etc. Bereiche, in denen die Lösung sichals hinreichend glatt herausstellt, bleiben unverfeinert oder könne- etwa bei zeit abhängigen Anwendungen - sogar wieder vergröbert werden.
Zum Kontext dieses Buches Die numerische Behandlung partieller Differentialgleichungen beinhaltet im allgemeinen die Lösung großer bis sehr großer Gleichungssysteme. Bei dreidimensionalen Problemen z. B. sind mehrere Millionen Unbekannte keine Seltenheit, und obwohl die Rechenleistung der stärksten Computer in den letzten Jahrzehnten exponentiell angestiegen ist, könnten viele praxis­ relevante Probleme heute nicht gelöst werden, wären die Numeriker nicht bei der Entwicklung effizienter Algorithmen ähnlich erfolgreich gewesen. Zu den bemerkenswertesten Fortschritten auf diesem Gebiet zählt die Entwicklung adaptiver Mehrgitter-und Multilevelverfahren, deren Erfolg auf der Verschmelzung zweier leistungsfähiger Konzepte beruht: der Kombination adaptiver Diskretisierungstechniken mit schnellen Mehrgitter- bzw. Multilevellösern. Die Anwendung adaptiver Diskretisierungstechniken dient zunächst dazu, die Anzahl der Unbekannten und damit die Dimension des zu lösenden Gleichungssystems möglichst gering zu halten. Wurden früher zur Diskretisierung partieller Differentialgleichungen in erster Linie gleichmäßig strukturierte Rechteckgitter verwendet, so ist man heute durch den Einsatz ge­ eigneter Fehlerschätzer in der Lage, die Diskretisierung - ausgehend von einem relativ groben Anfangsgitter und einer entsprechend groben Näherungslösung - schrittweise an die aktuel­ le Näherungslösung anzupassen, bis die gewünschte Genauigkeit erreicht ist. Üblicherweise wird dazu das aktuelle Diskretisierungsgitter lokal verfeinert, und zwar an solchen Stellen, wo aufgrund entsprechender Fehlerabschätzungen eine höhere Genauigkeit zu erwarten ist, z. B. in der Nähe von Singularitäten, Grenzschichten, einspringenden Ecken, etc. Bereiche, in denen die Lösung sichals hinreichend glatt herausstellt, bleiben unverfeinert oder könne- etwa bei zeit abhängigen Anwendungen - sogar wieder vergröbert werden.

More About Barnes and Noble at Hamilton Place

Barnes & Noble is the world’s largest retail bookseller and a leading retailer of content, digital media and educational products. Our Nook Digital business offers a lineup of NOOK® tablets and e-Readers and an expansive collection of digital reading content through the NOOK Store®. Barnes & Noble’s mission is to operate the best omni-channel specialty retail business in America, helping both our customers and booksellers reach their aspirations, while being a credit to the communities we serve.

2100 Hamilton Pl Blvd, Chattanooga, TN 37421, United States

Find Barnes and Noble at Hamilton Place in Chattanooga, TN

Visit Barnes and Noble at Hamilton Place in Chattanooga, TN
Powered by Adeptmind